Acta Cryst. (1965). 18, 815

Verfeinerung der Struktur von Heptaschwefelimid, S7NH. Von Johannes Weiss und Hans-Stephan Neubert,

Anorg, Chem. Institut der Universität Heidelberg, Deutschland

(Eingegangen am 31. Oktober 1964 und wiedereingereicht am 7. Dezember 1964)

In einer früheren Arbeit konnten wir zeigen (Weiss, 1960) dass S_7NH und $S_6(NH)_2$ dieselbe Struktur besitzen wie rhombischer Schwefel (Warren & Burwell, 1935; Abrahams, 1955) und S₄(NH)₄ (Lund & Svendson, 1957; Sass & Donohue, 1958). Die Strukturbestimmung war jedoch, da damals noch kein Elektronenrechner zur Verfügung stand, relativ ungenau. Insbesondere waren die S-S-Abstände im S7NH sehr unterschiedlich gefunden worden, und es war fraglich, ob dem eine reale Bedeutung zukommt. Es schien deshalb notwendig, die Struktur des S₇NH weiter zu verfeinern.

Die am Einkristall mit dem Zählrohr neu bestimmten Gitterkonstanten sind: a=7,608, b=8,006, c=13,086 Å. [Raumgruppe Pbnm (D_{2h}^{16}) mit 4 Molekülen S₇NH in der Elementarzelle].

Es wurden zunächst 3-dim. Fouriersynthesen durchgeführt, bis die anschliessende Fe-Berechnung keine Vorzeichenänderung mehr ergab. Anschliessend wurde eine 'back-shift'-Korrektur gemacht (Booth, 1946). Tabelle 1 enthält in Spalte I die früher gefundenen Parameter, in Spalte II die sich aus der letzten Fo-Synthese ergebenden Werte, Spalte III die korrigierten Werte und Spalte IV die Standard-Abweichung.

Tabelle 1. Parameter

		-			
		1	II	III	IV
S(1)	х	0,247	0,2440	0,2439	0,0035
	у	0,161	0,1673	0,1665	0,0029
	z	0,142	0,1446	0,1407	0,0010
S(2)	x	0,485	0,4880	0,4863	0,0037
	у	0,228	0,2288	0,2285	0,0031
	z	0,080	0,0794	0,0803	0,0009
S(3)	x	0,660	0,6582	0,6581	0,0043
	у	0,045	0,0425	0,0426	0,0032
	z	0,136	0,1321	0,1270	0,0013
S(4)	x	0,790	0,7891	0,7899	0,0028
• •	у	0,127	0,1288	0,1285	0,0035
	z	4	4	4	
N	x	0,214	0,2131	0,2108	0,0088
	у	0,272	0,2781	0,2762	0,0071
	z	4	4	$\frac{1}{4}$	—
$R = \frac{\Sigma F_c }{\Sigma}$	$ F_o $	-0,18	0,15	0,12	

Tabelle 2 zeigt, dass im Gegensatz zur früheren Bestimmung [S(1)-S(2) 2,05 Å, S(2)-S(3) 2,11 Å, S(3)-S(4) 1,90 Å] die Unterschiede in den S-S-Bindungsabständen wesentlich geringer geworden sind und nur wenig von den im rhombischen Schwefel gefundenen Abständen (2,04 Å) abweichen. Auch die Bindungswinkel sind mit denen im rhombischen Schwefel praktisch identisch.

Tabelle 2. Abstände und Winkel im S7NH

S(1)-S(2)	2,05 Å	N S(1) S(2)	108,6°
S(2) - S(3)	2.07	S(1) S(2) S(3)	107,0
S(3) - S(4)	2.02	S(2) S(3) S(4)	107,5
S(1)-N	1.73	S(3) S(4) S(3')	106.4
2(1) 1	-,	S(1) N S(1')	115,8
S(1)-S(1')	2,94		
S(1) - S(3)	3,31	S(1') S(1) S(3)	92,6
S(3) - S(3')	3,22	S(1) S(3) S'(3)	87,4
S(1) - S(3')	4.52	S(2)	
S(2)-S(2')	4.42		
S(4)–N	4,57	S(1) $S(3)$	3)
			<u>\</u>
		– HN – – –	-S(4)-
			/
		S(1') S(3	3')
		\sim	
		S(2')	

Die Verfeinerung wurde mit einem eigenen Programm, das die oben angegebenen Schritte selbstständig nacheinander durchführt, auf dem Siemens Digitalrechner 2002 gerechnet.

Die Deutsche Forschungsgemeinschaft unterstützte diese Arbeit durch eine Sachbeihilfe.

References

ABRAHAMS, S. C. (1955). Acta Cryst. 8, 661. BOOTH, A. D. (1946). Proc. Roy. Soc. A, 188, 77. LUND, E. W. & SVENDSON, S. R. (1957). Acta Chem. Scand. 11, 940. SASS, R. L. & DONOHUE, J. (1958). Acta Cryst. 11, 497. WARREN, B. E. & BURWELL, J. T. (1935) J. Chem. Phys. 3, 6. WEISS, J. (1960). Z. anorg. Chem. 305, 190.

Acta Cryst. (1965). 18, 815

On the thermal expansion of protactinium metal. By J.A.C. MARPLES, Atomic Energy Research Establishment, Harwell, Didcot, Berks., England

(Received 4 September 1964)

A small quantity of protactinium metal was prepared by reducing the tetrafluoride with calcium and arc melting the resulting fine dispersion of metal in calcium fluoride to form a bead weighing about 80 mg. This bead was malleable and readily flattened (a phenomenon previously reported by Zachariasen, 1952) to form a disc about 7 mm in diameter.

This disc was mounted in a high temperature diffractometer and the X-ray pattern recorded at various temperatures. The lines obtained agreed with the body-centred